A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation
نویسندگان
چکیده
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37 degrees C. The parameters were tested by predicting the secondary structures of sequences with known secondary structure that are from organisms with known optimal growth temperatures. Compared with the previous set of enthalpy nearest neighbor parameters, the sensitivity of base pair prediction improved from 65.2 to 68.9% at optimal growth temperatures ranging from 10 to 60 degrees C. Base pair probabilities were predicted with a partition function and the positive predictive value of structure prediction is 90.4% when considering the base pairs in the lowest free energy structure with pairing probability of 0.99 or above. Moreover, a strong correlation is found between the predicted melting temperatures of RNA sequences and the optimal growth temperatures of the host organism. This indicates that organisms that live at higher temperatures have evolved RNA sequences with higher melting temperatures.
منابع مشابه
NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure
The Nearest Neighbor Database (NNDB, http://rna.urmc.rochester.edu/NNDB) is a web-based resource for disseminating parameter sets for predicting nucleic acid secondary structure stabilities. For each set of parameters, the database includes the set of rules with descriptive text, sequence-dependent parameters in plain text and html, literature references to experiments and usage tutorials. The ...
متن کاملA sensitivity analysis of RNA folding nearest neighbor parameters identifies a subset of free energy parameters with the greatest impact on RNA secondary structure prediction
Nearest neighbor parameters for estimating the folding energy changes of RNA secondary structures are used in structure prediction and analysis. Despite their widespread application, a comprehensive analysis of the impact of each parameter on the precision of calculations had not been conducted. To identify the parameters with greatest impact, a sensitivity analysis was performed on the 291 par...
متن کاملImproved free-energy parameters for predictions of RNA duplex stability.
Thermodynamic parameters for prediction of RNA duplex stability are reported. One parameter for duplex initiation and 10 parameters for helix propagation are derived from enthalpy and free-energy changes for helix formation by 45 RNA oligonucleotide duplexes. The oligomer sequences were chosen to maximize reliability of secondary structure predictions. Each of the 10 nearest-neighbor sequences ...
متن کاملImproved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes.
To improve the previous DNA/DNA nearest-neighbor parameters, thermodynamic parameters (deltaH degrees, deltaS degrees and deltaG degrees) of 50 DNA/DNA duplexes were measured. Enthalpy change of a helix initiation factor is also considered though the parameters reported recently did not contain the factor. A helix initiation factor for DNA/DNA duplex determined here was the same as that of RNA/...
متن کاملTesting the Nearest Neighbor Model for Canonical RNA Base Pairs: Revision of GU Parameters
Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six addit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006